Using Coordinated Epistasis to Investigate Genetic Architecture of Psychiatric Comorbidity

Jolien Rietkerk^{1,2,3}, Morten Krebs⁴, Lianyun Huang^{1,2,3}, iPSYCH Study Consortium, Thomas Werge^{4,5,6}, Andrew J. Schork^{4,7,8}, Andy Dahl⁹, Na Cai^{1,2,3}

¹Helmholz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany ²Computational Health Centre, Helmholtz Munich, Neuherberg, Germany ³School of Medicine and Health, Technical University Munich, Munich, Germany ⁴Institute of Biological Psychiatry, Mental Health Centre, Sct Hans, Copenhagen University Hospital, Mental Health Services CPH, Copenhagen, Denmark ⁵Lundbeck Foundation GeoGenetics Centre, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark ⁶Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ⁷Section for Geogenetics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark ⁸Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, Arizona ⁹Section of Genetic Medicine, University of Chicago, IL 60637

SUMMARY

Our research focuses on the identification of the shared genetic architecture across psychiatric disorders. This has not been previously possible as most genetic cohorts focus on single disorders. We work with data from the iPSYCH¹ dataset, which contains information on psychiatric comorbidity drawn from the Danish Medical Registry. Using this data, we perform the first study on the genetics of psychiatric comorbidity, asking if the genetic liability to each disorder and a variety of comorbid measures are likely on different and interacting pathways. To do this we extend the Coordinated Epistasis² (CE) framework using a combination of Polygenic Risk Scores³ (PRS) and Pearson-Aitken Family Genetic Risk Scores⁴ (PA-FGRS). For the first time, we identify coordinated polygenic interactions contributing to cross-disorder genetic sharing and comorbidity among five psychiatric disorders.

DATA

The iPSYCH dataset

The Lundbeck Foundation initiative for Integrative Psychiatric Research (iPSYCH2015¹) contains genotype and phenotype information of individuals within the Danish Register that have a psychiatric disorder (cases), and a random sample of their population (controls). The whole of iPSYCH2015 is split into two sub-cohorts: iPSYCH2012⁵ (30,000 controls; 57,377 cases) and iPSYCH2015i (19,982 controls; 36,741cases) which were genotyped on different SNP arrays. Besides genotype information, the current study also utilizes the geneologies present within the Danish Register data containing 2,066,657 unique relatives as input for PA-FGRS.

METHODS

Coordinated Epistasis (CE)

The CE framework utilizes genetic liability scores (GS) to obtain representations of genetic pathways.² Then, using shown regression models, it shows us the direction of the interaction effect (γ) and we test for significance through log-likelihood test.

Psychiatric disorders and measures of their comorbidity

	SCZ	BPD	AUT	ADHD	MDD
SCZ-	13804	93	94	91	69
BPD	7	9605	98	91	49

Within iPSYCH2015 we work with cases of schizophrenia (SCZ), major depressive disorder (MDD), bipolar disorder (BPD), attention-deficit hyperactivity disorder (ADHD) and autism (AUT). We derive the following **comorbidity measures** from them:

Pearson-Aitken Family Genetic Risk Scores (PA-FGRS)

Under a mixture model, PA-FGRS⁴ uses data from up to 20 relatives, estimates population parameters, then predicts genetic liability.

Interactions between psychiatric disorders

Our proof-of-concept analyses takes the pathway representations (PRS/PA-FGRS) of two disorders and asks if they interact in predicting either disorders, or their comorbidity measures. We first perform cross-pheno CE tests using PRS and PA-FGRS derived from single disorders. We find that while all significant interaction tests for individual disorders or the "both" and "either" comorbidity measures are negative, the significant interactions for the "both vs either" comorbidity measure are always positive. We then perform single-pheno CE tests using PRS and PA-FGRS derived from comorbidity measures. We highlight the "both vs either" hit of AUT-ADHD, which shows consistent positive interaction effects in both PRS and PA-FGRS in both the iPSYCH2012 and iPSYCH2015 cohorts.

REFERENCES

Bybjerg-Grauholm et al. *MedRxiv* (pre-print)
Sheppard et al. *PNAS* (2021)
Pedersen et al. *Mol Psychiatry* (2018)
Choi et al. *Nat Protoc* (2020)
Choi and O'Reiliey. *GigaScience* (2019)

