
Coordinated Epistasis (CE)

individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.

Results
Coordinated Polygenic Epistasis. Throughout the paper, we assume
a polygenic pairwise epistasis model:

yi = ∑M
j=1

Gijβj +∑
j≤j’

GijGij’ Ωjj’ + ei, [1]

where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,

Ω = 0. In this model, SNP j always has the same effect βj on the
phenotype, regardless of genetic background or environment. In
the polygenic setting, where there are many more SNPs than in-
dividuals (M > N), total heritability can still be reliably estimated
by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
simple fixed-effect models (21). More recently, random-effect
models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
genome-wide signal (22).
While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
Ω are independent. We are interested in an orthogonal question:
when are β andΩ deeply intertwined by latent interacting pathways?
Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
the CE γ is nonzero, where γ is defined as:

P1

P2

+ Y

P1

P2

× Y

P1

P2

÷ Y

P1

P2
? Y

Additive Even-Odd Test

Negative
(Antagonistic)

Positive
(Synergistic)

1 rh
C

2 rh
C

CBA

!"#"$

!"%"$

!"&"$

'$("!"#"$
')("!"*"$

Fig. 1. CE and the EO test with two chromosomes. (A) In the additive model, SNP effects from the two phenotype-increasing pathways are summed to
produce the phenotype (γ = 0). (B) Same as A, except the pathways interact either positively (synergistically, 3,   γ > 0) or negatively (antagonistically, 4,   γ < 0).
(C) The EO test considers interaction from traits derived from the even and odd chromosomes in place of the unknown pathways truly driving the interaction.
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.
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where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,
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the polygenic setting, where there are many more SNPs than in-
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by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
simple fixed-effect models (21). More recently, random-effect
models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
genome-wide signal (22).
While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
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Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
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Fig. 1. CE and the EO test with two chromosomes. (A) In the additive model, SNP effects from the two phenotype-increasing pathways are summed to
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.
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to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
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pairwise SNP epistasis effects in the genome.
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likelihood (GREML), which models βj as i.i.d. Gaussian (40).
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(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
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While these methods are useful for characterizing the existence
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eters. Concretely, we prove that these pathways exist if, and only if,
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iPSYCH2012 iPSYCH2015i PRS 5.7E-02 1.3E-02

iPSYCH2015i iPSYCH2012 PRS 3.0E-02 2.9E-02

Registry Data iPSYCH2015 PA-FGRS 1.4E-02 1.1E-05

The Lundbeck Foundation initiative for Integrative Psychiatric Research (iPSYCH20151)
contains genotype and phenotype information of individuals within the Danish Register that
have a psychiatric disorder (cases), and a random sample of their population (controls).
The whole of iPSYCH2015 is split into two sub-cohorts: iPSYCH20125 (30,000 controls;
57,377 cases) and iPSYCH2015i (19,982 controls; 36,741cases) which were genotyped
on different SNP arrays. Besides genotype information, the current study also utilizes the
geneologies present within the Danish Register data containing 2,066,657 unique relatives
as input for PA-FGRS.
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iPSYCH
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Within iPSYCH2015 we work with cases of
schizophrenia (SCZ), major depressive
disorder (MDD), bipolar disorder (BPD),
attention-deficit hyperactivity disorder (ADHD)
and autism (AUT). We derive the following
comorbidity measures from them:

The CE framework utilizes genetic liability scores (GS) to obtain representations of genetic
pathways.2 Then, using shown regression models, it shows us the direction of the
interaction effect (𝞬) and we test for significance through log-likelihood test.

The PRS is a GS that sums the product of genotypes in a test dataset with effect sizes 𝛽 at
independent significant SNPs from a Genome-Wide Association Studies (GWAS)
performed on a discovery cohort. We apply the Clumping and Thresholding (C+T) using
PRSice6 to find optimal PRS that best predicts our phenotypes of interest.

Under a mixture model, PA-FGRS4 uses data from up to 20 relatives, estimates population
parameters, then predicts genetic liability.

Random 
control 
cohort

Our proof-of-concept analyses takes the pathway representations (PRS/PA-FGRS) of two disorders and asks if they interact in predicting either disorders, or their comorbidity measures. We
first perform cross-pheno CE tests using PRS and PA-FGRS derived from single disorders. We find that while all significant interaction tests for individual disorders or the “both” and “either”
comorbidity measures are negative, the significant interactions for the “both vs either” comorbidity measure are always positive. We then perform single-pheno CE tests using PRS and PA-
FGRS derived from comorbidity measures. We highlight the “both vs either” hit of AUT-ADHD, which shows consistent positive interaction effects in both PRS and PA-FGRS in both the
iPSYCH2012 and iPSYCH2015i cohorts.

Our research focuses on the identification of the shared genetic architecture across psychiatric disorders. This has not been previously possible as most genetic cohorts focus on
single disorders. We work with data from the iPSYCH1 dataset, which contains information on psychiatric comorbidity drawn from the Danish Medical Registry. Using this data, we
perform the first study on the genetics of psychiatric comorbidity, asking if the genetic liability to each disorder and a variety of comorbid measures are likely on different and
interacting pathways. To do this we extend the Coordinated Epistasis2 (CE) framework using a combination of Polygenic Risk Scores3 (PRS) and Pearson-Aitken Family Genetic
Risk Scores4 (PA-FGRS). For the first time, we identify coordinated polygenic interactions contributing to cross-disorder genetic sharing and comorbidity among five psychiatric
disorders.
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