Coordinated Epistasis Reveals Pathway Architecture (and method considerations)

Jolien Rietkerk

Helmholtz Pioneer Campus, Cai lab WCPG 2023, Montréal, Canada

Disclosure

Nothing to disclose

Pathways leading to diseases

Unknown diagnosis Y

We think Y is actually Alzheimers + Type 2 Diabetes

Alzheimers

Type 2 Diabetes

What if Y is a psych disorder

Coordinated Epistasis for assessing pathway architecture

Coordinated Epistasis (CE)

- $P_1 \approx PRS$ pathway 1
- $P_2 \approx PRS$ pathway 1
- Pathway specific variants are distributed all across the genome

Chromosome as partitions

Chromosome as partitions

 $y \sim \alpha_i PRS_i + \alpha_j PRS_j + \gamma_{i,j} PRS_i^* PRS_j$

 $i,j \in \{1..22\}, i \neq j$

In total, 231 pairs of chromosomes

Tang D, et al. bioRxiv 2022, Sheppard, B. et al. PNAS 2022

Pathway 1

Assess MDD pathway architecture in UKB

MDD	LifetimeMDD (67K)
Subtypes	6 clinical subtypes (N=25-65K)
Symptoms	14 symptoms CIDI-SF(N=50-100K)

Caveats in using cross-validation PRS

CV creates batch effects

I. Clumping and thresholding

II. GWAS on varying individuals

Mundlak method corrects batch effect

 $y \sim \alpha_1 PRS'_1 + \alpha_2 PRS'_2 + \mu_p + \gamma_{1,2} PRS'_1 * PRS'_2$

 μ_p = mean of means

PRS' = PRS - μ_p

MDD analysis in UKB

MDD	LifetimeMDD (67K)
Subtypes	6 clinical subtypes (N=25-65K)
Symptoms	14 symptoms CIDI-SF(N=50-100K)

MDD analysis in UKB

MDD	LifetimeMDD (67K)
Subtypes	6 clinical subtypes (N=25-65K)
Symptoms	14 symptoms CIDI-SF(N=50-100K)

Wide-ranging implication for PRS analyses

• For all analyses using CV-based PRS, where PRS are used as "phenotypes" or "covariates"

• Eg.

- Multi-PRS predictions
- PRS x SNP interactions
- PRS x PRS interactions

Applying CE to identify heterogeneity in MDD phenotypes

Different definitions or meta-analyses of MDD have different levels of heterogeneity

Family History

MTAG to improve effective sample size

Turley P, et al., Nat Genet 2018

MTAG to improve effective sample size

Turley P, et al., Nat Genet 2018

MDD phenotypes from MTAG

Phenotype	Number of input GWAS	Description
MTAG.FamilyHistory	3	severe depression in family members
MTAG.ALLDep+Envs	9	Shallow MDD phenotypes and environment variables

Dahl A*, ... Cai N*. Nat Genet (2023 - in press)

CE detects heterogeneity in pathways in MDD from MTAG

Phenotype	Number of input GWAS	Description
MTAG.FamilyHistory	3	severe depression in family members
MTAG.AllDep	5	Various shallow MDD phenotypes
MTAG.ALLDep+Envs	9	Shallow MDD phenotypes and environment variables
MTAG.Gppsy	1	Gppsy
MTAG.Envs	5	Related environment variables
MTAg.All	12	Shallow MDD phenotypes, enivornment variables, family history

CE detects heterogeneity in pathways in MDD from MTAG

Phenotype	Number of input GWAS
MTAG.FamilyHistory	3
MTAG.AllDep	5
MTAG.ALLDep+Envs	9
MTAG.Gppsy	1
MTAG.Envs	5
MTAg.All	12

Summary

- CE detects pathway architecture
- 10x CV in PRS creates batch effect (wide-ranging implications!)
- Mundlak approach correct for batch effect in CV
- CE can detect significant pathway heterogeneity in heterogenous MDD meta-analyses

Acknowledgements

X: @JolienRietkerk Website: <u>rietkerk-research.com</u>