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5 out of 14 symptoms for a duration of two weeks, 
including either depressed mood or anhedonia

Major Depressive Disorder (MDD)



Depressed mood
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Waking too early
Feeling worthless

Lost focus

Loss of joy
Weight gain

Insomnia
Fatigue
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.

Results
Coordinated Polygenic Epistasis. Throughout the paper, we assume
a polygenic pairwise epistasis model:

yi = ∑M
j=1

Gijβj +∑
j≤j’

GijGij’ Ωjj’ + ei, [1]

where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,

Ω = 0. In this model, SNP j always has the same effect βj on the
phenotype, regardless of genetic background or environment. In
the polygenic setting, where there are many more SNPs than in-
dividuals (M > N), total heritability can still be reliably estimated
by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
simple fixed-effect models (21). More recently, random-effect
models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
genome-wide signal (22).
While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
Ω are independent. We are interested in an orthogonal question:
when are β andΩ deeply intertwined by latent interacting pathways?
Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
the CE γ is nonzero, where γ is defined as:
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Fig. 1. CE and the EO test with two chromosomes. (A) In the additive model, SNP effects from the two phenotype-increasing pathways are summed to
produce the phenotype (γ = 0). (B) Same as A, except the pathways interact either positively (synergistically, 3,   γ > 0) or negatively (antagonistically, 4,   γ < 0).
(C) The EO test considers interaction from traits derived from the even and odd chromosomes in place of the unknown pathways truly driving the interaction.
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
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acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
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where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,

Ω = 0. In this model, SNP j always has the same effect βj on the
phenotype, regardless of genetic background or environment. In
the polygenic setting, where there are many more SNPs than in-
dividuals (M > N), total heritability can still be reliably estimated
by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
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models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
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While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
Ω are independent. We are interested in an orthogonal question:
when are β andΩ deeply intertwined by latent interacting pathways?
Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
the CE γ is nonzero, where γ is defined as:

P1

P2

+ Y

P1

P2

× Y

P1

P2

÷ Y

P1

P2
? Y

Additive Even-Odd Test

Negative
(Antagonistic)

Positive
(Synergistic)

1 rh
C

2 rh
C

CBA

!"#"$

!"%"$

!"&"$

'$("!"#"$
')("!"*"$
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.
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a polygenic pairwise epistasis model:
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where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,

Ω = 0. In this model, SNP j always has the same effect βj on the
phenotype, regardless of genetic background or environment. In
the polygenic setting, where there are many more SNPs than in-
dividuals (M > N), total heritability can still be reliably estimated
by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
simple fixed-effect models (21). More recently, random-effect
models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
genome-wide signal (22).
While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
Ω are independent. We are interested in an orthogonal question:
when are β andΩ deeply intertwined by latent interacting pathways?
Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
the CE γ is nonzero, where γ is defined as:
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.

Results
Coordinated Polygenic Epistasis. Throughout the paper, we assume
a polygenic pairwise epistasis model:

yi = ∑M
j=1

Gijβj +∑
j≤j’

GijGij’ Ωjj’ + ei, [1]

where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,

Ω = 0. In this model, SNP j always has the same effect βj on the
phenotype, regardless of genetic background or environment. In
the polygenic setting, where there are many more SNPs than in-
dividuals (M > N), total heritability can still be reliably estimated
by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
simple fixed-effect models (21). More recently, random-effect
models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
genome-wide signal (22).
While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
Ω are independent. We are interested in an orthogonal question:
when are β andΩ deeply intertwined by latent interacting pathways?
Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
the CE γ is nonzero, where γ is defined as:
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.
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Coordinated Polygenic Epistasis. Throughout the paper, we assume
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Gijβj +∑
j≤j’

GijGij’ Ωjj’ + ei, [1]

where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,

Ω = 0. In this model, SNP j always has the same effect βj on the
phenotype, regardless of genetic background or environment. In
the polygenic setting, where there are many more SNPs than in-
dividuals (M > N), total heritability can still be reliably estimated
by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
simple fixed-effect models (21). More recently, random-effect
models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
genome-wide signal (22).
While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
Ω are independent. We are interested in an orthogonal question:
when are β andΩ deeply intertwined by latent interacting pathways?
Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
the CE γ is nonzero, where γ is defined as:
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.

Results
Coordinated Polygenic Epistasis. Throughout the paper, we assume
a polygenic pairwise epistasis model:

yi = ∑M
j=1

Gijβj +∑
j≤j’

GijGij’ Ωjj’ + ei, [1]

where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,

Ω = 0. In this model, SNP j always has the same effect βj on the
phenotype, regardless of genetic background or environment. In
the polygenic setting, where there are many more SNPs than in-
dividuals (M > N), total heritability can still be reliably estimated
by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
simple fixed-effect models (21). More recently, random-effect
models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
genome-wide signal (22).
While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
Ω are independent. We are interested in an orthogonal question:
when are β andΩ deeply intertwined by latent interacting pathways?
Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
the CE γ is nonzero, where γ is defined as:
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Are MDD symptoms complex 
phenotypes with interacting 
pathways? 



𝛾#$ 𝑝#$ 𝛾 %&' 𝑝%&'
Depressed mood -1.41E-04 9.76E-01 -2.83E-04 8.77E-15

Anhedonia 5.24E-03 5.34E-01 -1.59E-03 1.73E-08
Weight 1.96E-02 6.25E-02 1.66E-03 5.30E-04

Weight gain 2.83E-02 1.74E-01 3.26E-03 8.75E-08
Weight loss -9.82E-03 1.89E-01 -2.46E-03 3.3-E-04

Weight change 2.12E-01 1.05E-02 2.51E-03 3.76E-05
Sleep -9.41E-02 6.98E-02 4.46E-03 1.35E-07

Insomnia 3.71E-03 7.39E-01 1.85E-03 8.04E-03
Hypersomnia 8.71E-03 6.60E-01 1.61E-03 2.04E-04

Early up -8.95E-02 1.57E-01 -2.52E-03 1.31E-02
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Worthless 3.21E-02 6.73E-02 -1.09E-03 1.26E-06
Focus loss 3.25E-03 6.82E-01 -2.87E-03 1.22E-11

Suicidal -3.59E-03 8.14E-01 8.99E-04 2.43E-06

CE in MDD symptoms
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Characterization of interaction 
effect estimates
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Can we increase CE framework 
resolution?



* * *
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Chromosome partitions in UK Biobank 
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Are there symptom interactions 
towards MDD?



genome

partition chr 1 partition chr 2
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H1:	𝑦 ~∑𝑃𝑅𝑆! - 𝛼! + ∑(𝑃𝑅𝑆! - 𝑃𝑅𝑆!&')	-
𝛾()*

H0:	𝑦 ~∑𝑃𝑅𝑆! - 𝛼!



Cross-symptom tests in UK Biobank
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Summary

• We identified Coordinated Epistasis (CE) in Major Depressive Disorder 
and its symptoms.
• We further characterized gamma: it is a distribution.
• We increase resolution and identified symptom-specific pathway 

interactions driven by loci related to MDD.
• We extend across symptoms and identify symptom-specific pathway 

interactions towards MDD.



CONVERGE
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