Investigating divergent and convergent pathways in Major Depressive Disorder through Coordinated Epistasis

Jolien Rietkerk¹, Lianyun Huang¹, Linda Garvert^{2,3}, Vivek Appadurai⁴, Sandra van der Auwera^{2,3}, Hans Grabe^{2,3}, Thomas Werge⁴, Andrew Schork⁴, Bertarm Müller-Myshok^{5,6}, Andrew Dahl⁷, Na Cai¹

¹Helmholtz Pioneer Campus, Helmholtz Munich, 2Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 3German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, ⁴Institute of Bio Health Centre Sct. Hans, Mental Health Services of the Capital Region of Denmark, ⁵Planck Institute of Psychiatry, Munich, ⁶Cluster for Systems Neurology (SyNergy), Institute of Translational Medicine University of Liv

There is mounting evidence that Major Depressive Disorder (MDD) is likely the common outcome of diverse and potentially interacting pathways. However, these subtypes are yet to be robustly **SUMMARY** demonstrated^{1,2}. Taking advantage of the polygenic nature of MDD, we study MDD subtypes through a new statistical framework called Coordinated Epistasis (CE)³. The CE framework tests for polygenic interactions between polygenic risk scores (PRS) generated from partitions of the genome, which act as proxies for bona fide biological pathways leading to disease. The closer the the proxies to bona fide biological pathways leading to MDD, the better powered the CE test is; the distribution of interaction effect directions between proxy pathways further indicate the nature of CE in MDD. Using data from the UKBiobank⁴ we identify significant CE in both MDD and its worst-episode symptomt CE between worst-episode symptoms in their effect on MDD. We thereby agnostically and conclusively demonstrate the presence of heterogenous pathways leading to MDD. We further perform SNP-PRS interaction tests between pairs of significantly \blacktriangledown interacting PRS (each a proxy pathway), and identify genetic loci driving their interactions. For the first time, we demonstrate the existence of robust epistasis in MDD and its symptoms at the locus level. Overall, our results indicate there are synergistic and antagonistic polygenic epistasis in MDD and its symptoms, increasing our understanding of the polygenic etiology underlying **SO** MDD.

where a positive interaction effect *implies synergistic* pathways, while a negative \boldsymbol{y} implies antagonistic pathways;

3. Sheppard et al. (2021) *A model and test for coordinated polygenic* **epistasis in complex traits. PNAS. 118 (15) e1922305118**

4.Bycroft, C., Freeman, C., Petkova, D. et **al. (2018) The INC III II Bio**ban **resource** with deep phenotyping and genomic data and the set of the 5. American Psychiatric Association. (2013). *Dia*gnostic *and statistical statistics and statistics and statistics and statistics and statistics* **and** *statistics**and statistics**and statistics**an manual of mental disorders* (5th ed.). Arlington, VA: Author. 6 6. Choi, S.W., Mak, T.S. & O'Reilly, P.F. (2020) *Tutorial: a guide to* 8 *performing polygenic risk score analyses. Nat Protoc. 15, 2759–2772* 7. Coleman, J.R.I., Peyrot, W.J., Purves, K.I.. *et al*. Genome-v... Gene environment analyses of major depressive disorder and reported traumatic experiences in UK Biobank. Mol Psychiatry 25, 1430-14 (2020). η \cup $\tilde{\mathcal{L}}$ 9 \cdot V η

8. Nagel, M., Jansen, P.R., Stringer, S. *et al.* Meta-analysis of genome-19 wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. *Nat Genet* **50**, 920–927 (2018). \overline{c} $\overline{2}$

 $= -8.6E - 03$, $P = 6.2E - 04$).

REFERENCES

METHODS

UKBiobank dataset of individuals' genotypes and phenotypes is split into 10 sets of train-test pairs. This allows for **10-fold cross validation.** GWAS is

performed on each training set to estimate individual variant effect sizes. **Polygenic Risk Scores (PRS)** are constructed using GWAS summary statistics per chromosome in the training sets and genotypes on the test sets⁶. CE is then performed through testing for interaction effects between PRS from a) all evenchromosomes and all odd-chromosomes (**Even-Odd**), as shown:

and b) across PRS from all chromosome pairs in a **joint F-test.** To test the distribution of interaction effects genome-wide, we performed **100 random splits** of the genome with 11 chromosomes per partition, and obtained a distribution of CE γ across all 100 splits.

Even-Odd CE $\boldsymbol{\gamma}$ and per-chromosome PRS CE $\sum \boldsymbol{\gamma}_{chr}$ estimates **insufficiently represent the complexity of interactions effects in MDD.** To capture this complexity more accurately, we **performed CE on 100 random genome splits**. Each random genome split resulted in a γ estimate; we show the distribution of γ in the plot below for MDD and all its worst-episode symptoms. In addition, we performed a self-PRS interaction test, testing for interaction between the whole-genome PRS from MDD with itself (y_{whole} = 2.4E-02, P= 9.0E-07). This reduces power, and y_{whole} is not always representative of the distributions of y obtained from the 100 random splits. However, they capture the median *better* than the Even-Odd test y_{eo} . This is true for MDD and all its worst-episode symptoms, as shown in the figure below.

2 Significant 's between chromosome pairs in the joint F-test on chromosome specific PRS at FDR 10% for MDD: chr2-chr3 ($\boldsymbol{v}_{\text{chr}} = -$ 4.7E-02, P=5.9E-04) and chr14-chr21 (y_{chr} = 2.4E-02, P=5.4E-04). The same level of resolution is obtained for symptoms that have significant joint F-test CE, for example: A6 (fatigue) ($\Sigma \gamma_{\text{chr}}$ = -1.7E-04, P= 6.2E-07) shows four significantly interacting chromosome pairs at FDR 10%. This includes chr4-chr7($\gamma_{\rm chr}$ =8.0E-03, P=1.6E-03), chr4-chr10 ($\gamma_{\rm chr}$ =-7.5E-03, P=1.4E-04), chr4-chr21 (γ_{chr} =-3.5E-03, P=1.2E-03) and chr17-chr22 (γ_{chr}

$$
H_0: log(y) \sim covariates + \alpha_e PRS_e + \alpha_o PRS_o
$$

$$
H_1: log(y) \sim covariates + \alpha_e PRS_e + \alpha_o PRS_o
$$

$$
+ \gamma_{eo} PRS_e * PRS_o
$$

1. Dahl, A., & Zaitlen, N. (2020). *Genetic Influences on Disease Subtypes*. Ann. rev. of genomics and human genetics, 21, 413–435. 2. Cai et al. (2020) *Minimal phenotyping yields genome-wide association signals of low specificity for major depression.* Nature Genetics 52, 437- 447

DATA

Major Depressive Disorder (MDD) and its symptoms in UKBiobank. MDD in UKBiobank is defined by DSM-V criteria⁵ using its worst-episode and current symptoms collected through the Online Mental Health Questionnaire (MHQ). For analyses of individual symptoms we only extract worst-episode symptoms collected through the CIDI-SF.

RESULTS

−0.2 −0.1 0.0 0.1 0.2

−0.2 −0.1 0.0 0.1 0.2

splitgamma
Splitgamma
Splitgamma

1 2 3 4 5 6 7 8 9 10111213141516171819202122

*

MDD

*

1 2 3 4 5 6 7 8 9 10111213141516171819202122

A6 (Fatigue)

splitter i den statsmannen.
Splitter

are varying, MDD subtypes (peripartum, non-peripartum, **Coordinated Epistasis detected in clinically defined MDD subtypes, however not in neuroticism score, smoking and addiction.** Though power for Even-Odd test, F-test and self-PRS melancholic, non-melancholic and early-onset) all show significant CE, demonstrating interactions between pathways leading to MDD subtypes. Lack of interactions in other traits show that CE can be used to distinguish between different architectures, traits or diseases.

ں
ح We show, for the first time using an agnostic statistical framework, that there are interacting pathways in MDD and its worst-episode symptoms. Pathways leading to symptoms interact with each other when conferring risk to MDD. Further, we show that the CE framework narrows down the search space for locus level interactions, through initial detection of chr-pair interactions. Our locus-level findings give further insight into the underlying biology of these genome-wide CE interactions.

symptoms may help MDD, demonstrating that symptom pathways may interact in their effect on MDD. Interaction of delineate subtypes of MDD.

A A A A A A A A A A A A A A A A A
A A A A A A A A A A A
A A A A A A A A A A A – 1.o∟-∪ɔ*)*.
Whenjointly fitting **Significant CE between symptom pairs in their effects on MDD:** A1-A3b (Σ γ _{chr}=2.0E-03,P = 1.1E-03), and A4b-A6 (Σ γ _{chr}=-9.6E-05, P $= 1.8E-03$).

∑chr PF-test Significant Even-Odd CE in MDD in UKBiobank (eo = -2.1E-02 P=3.0E-02). Joint F-test across all chromosome-specific PRS gives consistent findings with an increase in power (**∑chr = -4.01E-05, P= pairs from joint F-test.** For example, for the chr4-chr7 **1.1E-11**). Replication analysis using GWAS summary statistics from external cohorts to construct PRS in UKBiobank show consistent results, validating significant CE in MDD. However, $\sum \mathbf{v}_{\text{chr}}$ are inconsistent between cohorts. **Further resolution of CE latent pathways can be obtained through SNP-PRS interactions on significant chromosome** interaction in A6 (fatigue), SNP-PRS interaction test between PRS trained on chr4 and SNPs on chr7 shows two hits on chr7 at chr-wide significance: $rs6460896$ (P = 1.0E-07) and $rs12532316$ (P = 7.9E-07). Notably, the former is within the *TMEM106B* gene, previously found in MDD GWAS.^{2,7,8} This indicates that interacting pathways leading to A6 (fatigue) may be etiologically integral to MDD.

Genetics Munich

VWDE

DISCUSSION